imag 0.8.0
User Documentation

May 2018

imag User Documentation CONTENTS
Contents

(1__Introductionl 6

(.1 The Problem| o 6

[1.2 The Approach|. 6

[1.3 Implementation| o 6

1.4 Alternative Projects| 7

|2 Architecture of the imag code| 7

2.1 Crate types| e 7

[2.2 Architecture of an imag module|. 000 8

2.3 DES| . o e e e e e e e e e e e 8

[B_The Store 9

B.1 File Formatlo 9

3.1.1 Header Formatl oo 10

BI12 Content Formatl 10

83.1.3 Examplel. 10

[3.2 File organization| 11

B3 Backendd 11

.31 Probleml. 11

[3.3.2 Implementation|.o 11

|4 Conventions, best practices| 12

4.1 Versioning| Lo e 12

4.2 Store and Entry functionality|o o000 12

M3 _Tibramied oot 13

[4.3.1 Library naming| e 13

[4.3.2 Library scope| 13

[4.3.3 Library error types/kinds[.o oo Lo 13

“4.3.4 Libraries with commandline frontends 13

4.3.5 Library testing] 14

44 Commandlinetools 14

[6F"Writing an imag module] 14

b.1 Datalayout| 14

[5.2 libimagnumberstorage| 14

0.8.0 May 2018

imag User Documentation CONTENTS

................................... 14
[5.2.2 Dependencies to other libraries| 15
h2.3 Interfacel. L 15

16
6.1 Bookmarks 16
6.2 Categoryl. e 16
0.3 Diaryl 16
BA_Edfl . . . 16
G5 Tnifl. . . . oo oo 16
0.6 Linklo 17
[6.6.1 Internal linkingl oo 0o 17
6.6.2 External linking| 000, 17

0 2 [17
§ Usagel 17

6.8 Maildl. o 18
0.8.1 CLII . . . o e 18

6.9 Noted e 18
[6.10 Referencel o o 19
0. 11 Storel e 19
§ OOING] . o o v e e e e e e e e e 19
6.13 Timetrackl oo 19
0.14 Todol 19
6.15 Viewl e 19
BI6 WK v e e e 19
20
7.1 libimagbookmark{ o 20
[7.2 libimagcontacts| 20
[7.3 libimagdiary|. 21
(r.3.1 Futureplang 21

[7.4 libimagentryannotationl. 21
[7.4.1 Library functionality| L. 22

[7.5 libimagentrycategory| 22
[7.6 libimagentrydatetime|.o 22
[7.7 libimagentryedit| 22

0.8.0 May 2018

imag User Documentation

CONTENTS

[7.8 libimagentryfilter| oo 22
7.9 libimagentrylink| oo 22
[7.10 libimagentrymarkdown|. o 22
[7.11 libimagentryrefl 22
7.11.1 Usage| o o e 23
CIT2 Tmifs 23
[fI1.3 Usecasel e 23
[7.11.4 Long-term TODO| 23
[7.12 libimagentrytag| 23
[7.13 libimagentryutill. oo 23
[7.14 libimagentryview| L 23
[7.15 libimagerror| 24
[7.16 libimaghabit|. 24
[7.17 libimaginteraction| 24
[7.18 libimaglogl 24
[7.19 libimagmails|.o 24
[7.20 libimagnotes|. 25
7.21 libimagrt]o 25
[7.21.1 Long-term TODO| 25
[7.22 libimagstore] L 25
[7.22.1 Long-term TODO| 25
[7.23 libimagtimetrack| oo 25
[(.23.1 Store formatl 25
[7.23.2 Library functionality| 26
[7.24 libimagtodo| L 26
[7.25 libimagutil]. 27
[7.26 libimagwikio 27
0 ayout|. oL 27

[7.26.2 Autolinking| 28

I8 Contributing to imag]| 28
8.1 Without Githublo oo 28
8.2 Finding anissuel 28
8.3 Prerequisites] 28
8.4 Commit guidelines] 29

0.8.0

May 2018

CONTENTS

imag User Documentation

29
29
30

[8.7 Developer Certificate of Origin|

30

9 Changelog]

31

35
35
37
37
37
38

38
39
40

41

44
44

May 2018

0.8.0

imag User Documentation CONTENTS

1 Introduction

This document is the user documentation for imag, the personal information management
suite for the commandline. Besides being a documentation, it serves also as “roadmap”
where this project should go.

Basically: This is Hobby stuff. Expect incompleteness, false statements and
generally read with big grain of salt.

If you have any objections, suggestions for improvements, bugs, etc, please file them. A
way to reach out to the imag project maintainer(s) is described in the CONTRIBUTING
file of the repository or in this document, in the appropriate section.

1.1 The Problem

The problem this project tries to solve is to provide a modular commandline application
for personal information management.

It targets “power users” or “commandline users”, uses plain text as a storage format and
tries to be scriptable. imag offers the ability to link data from different “PIM aspects” (such
as “diary” and “bookmark” for example).

One major goal of imag is to make the PIM data traverseable and queryable. For example:
a wiki article can be linked to an appointment which is linked to a todo which is linked to
a note which is linked to a contact.

imag wants to offer an all-in-one scriptable modular commandline personal information
management suite for all PIM aspects one can think of. Because imag uses plain text
(TOML headers for structured data and plain text which can be rendered using markdown,
for example, for continuous text) the user is always able to access their data without the
imag tools at hand.

1.2 The Approach

The approach “imag” takes on solving this problem is to store content in a “store” and
persisting content in a unified way. Meta-information is attached to the content which can
be used to store structured data. This can be used to implement a variety of “domain
modules” using the store. While content is stored in one place, imag does not duplicate
content. imag does not copy or move icalendar files, emails, vcard files, music or movies to
the store, but creates references to the actual files and stores meta-information in the store.

Detailed explanation on this approach follows in the chapters of this work.

1.3 Implementation

The program is written in the Rust programming language.

The program consists of libraries which can be re-used by other projects to implement and
adapt imag functionality. An external program may use a library of the imag distribution
to store content in the store of imag and make it visible to imag this way.

0.8.0 May 2018

imag User Documentation CONTENTS

This is a technical detail a user does not necessarily need to know, but as imag is intended
for power-users anyways, we could say it fits here.

1.4 Alternative Projects

imag is not the only project which tries to solve that particular problem. For example there
is lorg mode| for the emacs| text editor. There is also zim), a desktop wiki editor which is
intended to be used for a personal wiki.

The difference between imag and the mentioned projects is that imag is not there yet. Some
parts can be used, though it is far away from being feature-complete.

2 Architecture of the imag code

The imag codebase has a rather simple overall architecture. In this chapter the types of
crates, architecture of an imag module and the type structure are described.

2.1 Crate types

There are different types of crates in the imag world. A crate is a rust project.

First of all, there are core crates. These crates provide the very core of imag and almost all
other crates use them:

e libimagstore - The imag store is the abstraction over the filesystem. It provides
primitives to get, write and manipulate store entries and their header information.

e libimagrt - The runtime library, which provides functionality to create a store ob-
ject from libimagstore, helps with configurarion loading and commandline argument
handling (through the external “clap” crate).

e libimagerror - Error handling library for handling errors the imag way. Used in all
other crates, even the store itself. It also offers functionality to log and trace errors
as well as exiting the application, if necessary.

e libimagutil - Utilities.

The next type of imag crates are entry extension libraries. Those provide extensional
functionality for the types from libimagstore. For example, there is “libimagentrylink”
which provides functionality to link two entries in the store.

The third kind of crate is the one that offers end-user functionality for a imag domain, for
example “libimagtodo” provides functionality to track todos.

And last, but not least, the commandline frontend crates provide the user interface. These
are the kind of crates that are not library crates, but binaries.

Besides these, there are some other utility crates.

0.8.0 May 2018

https://orgmode.org
https://www.gnu.org/software/emacs/
http://zim-wiki.org/

imag User Documentation CONTENTS

2.2 Architecture of an imag module

With the things from above, a module could have the following architecture:

libimagstore

| imag—foo |
| libimagfoo | |
i i i |
\ | | |
libimagentrybar	libimagentrybaz	
		lib
\		
\	imag	
: !		
\ \		
libimagrt		
	error	
f f		

The foundation of all imag modules is the store, as one can see in the visualization from
above. Above the store library there is the libimagrt, which provides the basic runtime
and access to the Store object. Cross-cutting, there is the error library (and possibly the
util library, but we do not care about this one here), which is used through all levels. The
highest level of all imag modules is the commandline interface on top of the domain library.
In between can be any number of entry extension libraries, or none if not needed.

Theoretically, the commandline interface crate could be replaced to build a terminal user
interface, graphical user interface or web interface.

2.3 Types

The imag core, hence the libimagstore, libimagrt and libimagerror, provide a set of types
that a user (as in a library writer) should be aware of.

First of all, there is the Runtime type which is provided by the libimagrt. It provides basic
access to whether debugging or verbosity is enabled as well as the most important core
object: The Store.

The Store type is provided by the libimagstore library, the heart of everything.

When interacting with the store, two types are visible: FileLockEntry and Entry whereas
the former derefs to the latter, which basically means that the former wraps the latter. The

0.8.0 May 2018

imag User Documentation CONTENTS

FileLockEntry is a necessary wrapper for ensuring that when working concurrently with the
store, an entry is only borrowed once from the store. It also ensures that the object is alive
as long as the store is.

The Entry type provides functionality like reading the actual content, its header and so on.
Extensions for its functionality are implemented on this type, not on the FileLockEntry.

The Entry provides access to its header, which is a toml:: Value, where toml is the toml-rs
crate (external project). Convenience functionality is provided via the toml—query crate,
which is an external project which was initiated and extracted from the imag project.

Error types are also important. All errors in imag projects should be created with error —chain.
libimagerror provides functionality to enhance the experience with Result types and general
tracing of errors.

3 The Store

The store is where all the good things happen. The store is basically just a directory on
the filesystem imag manages and keeps its state in.

One could say that the store is simply a database, and it really is. We opted to go for
plain text, though, as we believe that plain text is the only sane way to do such a thing,
especially because the amount of data which is to be expected in this domain is in the lower
Megabytes range and even if it is really much won’t exceed the Gigabytes ever.

Having a storage format which is plain-text based is the superior approach, as text editors
will always be there.

A user should always be able to read her data without great effort and putting everything in
a real database like sqlite or even postgresql would need a user to install additional software
just to read his own data. We don’t want that. Text is readable until the worlds end and
we think it is therefore better to store the data in plain text.

The following sections describe the store and the file format we use to store data. One may
skip the following sections, they are included for users who want to dig into the store with
their editors.

3.1 File Format

The contents of the store are encoded in UTF-8. A normal text editor (like vim or the other
one) will always be sufficient to dig into the store and modify files. For simple viewing even
a pager (like less) is sufficient.

Each entry in the store consists of two parts:

1. Header
2. Content

The following section describe their purpose.

0.8.0 May 2018

imag User Documentation CONTENTS

3.1.1 Header Format

The header format is where imag stores its data. The header is an area at the top of every
file which is seperated from the content part by three dashes (———). Between these three
dashes there is structured data. imag uses TOML as data format for this structured data,
because it fits best and the available TOML parser for the rust programming language is
really good.

The header can contain any amount of data, but modules (see Section [6]) are restricted in
their way of altering the data.

So normally there are several sections in the header. One section ([imag]) is always present.
It contains a version field, which tells imag which version this file was created with.

Other sections are named like the modules which created them. Every module is allowed
to store arbitrary data under its own section and a module may never read other sections

than its own.

These conventions are not enforced by imag itself, though.

3.1.2 Content Format

The content is the part of the file where the user is free to enter any textual content. The
content may be rendered as Markdown or other markup format for the users convenience.
The store does never expect and specific markup and actually the markup implementation
is not inside the very core of imag.

Technically it would be possible that the content part of a file is used to store binary data.
We don’t want this, though, as it is contrary to the goals of imag.

3.1.3 Example

An example for a file in the store follows.

[imag |
version = 70.8.07

[note]
name = 7 foo”

[link]
internal = [”some/other/imag/entry”]

This is an example text, written by the user.

0.8.0 May 2018

imag User Documentation CONTENTS

3.2 File organization

The “Entries” are stored as files in the “Store”, which is a directory the user has access
to. The store may exist in the users Home-directory or any other directory the user has
read-write-access to.

Each module stores its data in an own subdirectory in the store. This is because we like to
keep things ordered and clean, not because it is technically necessary.

We name the path to a file in the store “Store id” or “Storepath” and we often refer to it by
using the store location as root. So if the store exists in /home/user/store/, a file with the
storepath /example.file is (on the filesystem) located at /home/user/store/example.file.

By convention, each libimagentry<name> and libimag<name> module stores its entries in
in /<name>/.

So, the pattern for the storepath is
/<module name>/<optional sub—folders>/<file name>

Any number of subdirectories may be used, so creating folder hierarchies is possible and
valid. A file “example” for a module “module” could be stored in sub-folders like this:

/module /some/sub/folder /example

3.3 Backends

The store itself also has a backend. This backend is the “filesystem abstraction” code.

Note: This is a very core thing. Casual users might want to skip this section.

3.3.1 Problem

First, we had a compiletime backend for the store. This means that the actual filesystem
operations were compiled into the store either as real filesystem operations (in a normal
debug or release build) but as a in-memory variant in the ‘test’ case. So tests did not hit
the filesystem when running. This gave us us the possibility to run tests concurrently with
multiple stores that did not interfere with each other.

This approach worked perfectly well until we started to test not the store itself but crates
that depend on the store implementation. When running tests in a crate that depends
on the store, the store itself was compiled with the filesystem-hitting-backend. This was
problematic, as tests could not be implemented without hitting the filesystem and mess up

other currently-running tests.
Hence we implemented store backends.
3.3.2 Implementation

The filesystem is abstracted via a trait FileAbstraction which contains the essential functions
for working with the filesystem.

0.8.0 May 2018

imag User Documentation CONTENTS

Two implementations are provided in the code:

o FSFileAbstraction
e InMemoryFileAbstraction

whereas the first actually works with the filesystem and the latter works with an in-memory
HashMap that is used as filesystem.

Further, the trait FileAbstractionInstance was introduced for functions which are executed
on actual instances of content from the filesystem, which was previousely tied into the
general abstraction mechanism.

So, the FileAbstraction trait is for working with the filesystem, the FileAbstractionInstance
trait is for working with instances of content from the filesystem (speak: actual Files).

In case of the FSFileAbstractionlnstance, which is the implementation of the FileAbstractionInstance
for the actual filesystem-hitting code, the underlying resource is managed like with the old

code before. The InMemoryFileAbstractionlnstance implementation is corrosponding to

the InMemoryFileAbstraction implementation - for the in-memory “filesystem”.

4 Conventions, best practices

This section explains conventions used in the imag codebase. It is mainly focused on devel-
opers, but a user may read it for getting to know how imag works.

Lets work our way up from the store and how to extend it to the commandline user interface.

4.1 Versioning

All imag crates are versioned with the same version number until we reach some 71.0.0”
version. This means that all imag tools are only tested for compatibility with libraries and
such if their version numbers match. It might not be possible to import one imag library
in version 0.3.0 and another one in 0.4.0 and make them work together. It also means that
if new tools are introduced into the imag codebase, they might start with their first version
not at 0.1.0 but at something like 0.5.0.

4.2 Store and Entry functionality

A Entry does not offer much functionality by itself. So its the job of libraries to extend its
functionality. This should never be done by wrapping the Entry type itself but by providing
and implementing an extension trait on it.

Same goes for extending the Store type: never wrap it, always provide an extension trait
for it.

These two rules ensure that the type does not lose any functionality from a wrapping. Deref
could do that, but not over muliple levels, so extension traits it is. It also most likely results
in functions inside the extension trait which all return a Result<_, _>.

0.8.0 May 2018

imag User Documentation CONTENTS

4.3 Libraries

In the next few sections, conventions and best practices for writing a imag library are written
down.

A developer of imag should read this carefully, a user may skip this section or cross-read it

for better understanding of the imag project.

4.3.1 Library naming

Libraries which provide functionality for entries or the store (most likely entries or both)
should be named “libimagentrything” whereas “thing” stands for what the library provides.

All other libraries should be prefixed with “libimag” at least. Most likely, one will not write
such a library but rather a “libimagentrything” library.

4.3.2 Library scope

A library should never introduce utility functionality which could be useful for other libraries
as well. If there is no such functionality available, the “libimagutil” or “libimagentryutil”
might be a place where such a function would be put.

If a library has to introduce free functions in its public interface, one should think hard
whether this is really necessary.

4.3.3 Library error types/kinds

Libraries must use “error-chain” to create error types and kinds. Most likely, a library needs
some kinds for wrapping the errors from underlying libraries, such as the store itself.

A library must never introduce multiple error types, but is free to introduce as many error
kinds as required.

4.3.4 Libraries with commandline frontends

Libraries with commandline frontends provide end-user functionality. Normally, they de-
pend on one or more “libimagentrything” libraries. They should be named “libimagthing”,
though. For example: “libimagdiary”, “libimagtimetrack” or “libimagwiki”, whereas the
commandline frontends would be “imag-diary”, “imag-timetrack” and “imag-wiki”, respec-

tively.

If such a library needs to depend on another “libimagthing”, for example if “libimagdiary”
needs to depend on “libimagnote”, one should think about this and whether the functionality
could be outsourced to a more general “libimagentrything”.

A library which implements a functionality for imag may contain helper functions for com-
mandline stuff, but that is discouraged.

0.8.0 May 2018

imag User Documentation CONTENTS

4.3.5 Library testing

All libraries should be tested as much as possible. Sometimes it may not be possible without
a lot of effort, but still: more tests = better!

4.4 Commandline tools

The commandline tools are the CLI-frontends for their respective libraries. So libimagdiary
has a CLI frontend imag—diary.

Those CLI frontends use functionality from libimagrt to build a consistent commandline

interface.

5 Writing an imag module

So you want to write a module for imag. That’s nice.

This guide helps you getting started. It also can help you understanding how imag modules
work, so even if you do not want to write a full new module, but extend or alter one, this
guide may help you.

5.1 Data layout

First, you have to think about what data you want to store. What functionality do you
want to provide and what data that creates.

In this example, we're writing a module that stores numbers. We’re writing the appropriate
library for that as well as a commandline frontend.

5.2 libimagnumberstorage

We’re writing a libimagnumberstorage which provides the core functionality of our module:

Storing numbers.

That library can then be used by other library authors and by the commandline interface

implementation.

5.2.1 Setup

So what do we need to do to write this library:

1. Create a new “lib” crate. Because we're writing a “domain” library, we’re doing this in
the 1ib /domain subdirectory: cd lib /domain; cargo new ——lib libimagnumberstorage.

2. After creating the library, we have to add the new library to the /Cargo.toml field and
add the missing metadata in the new /lib /domain/libimagnumberstorage/Cargo.toml
file.

0.8.0 May 2018

imag User Documentation CONTENTS

That was the setup part. Now we can implement our functionality. For that, we need to
extend two types from libimagstore, so we have our first dependency here.

5.2.2 Dependencies to other libraries

3. Put libimagstore as a dependency in the /lib /domain/libimagnumberstorage/Cargo.toml
file. By using libimagstore = { version = ”0.8.0”, path = ”../../../ lib /core/libimagstore” }
we automatically get all the goodness of Cargo, so that releases automagically work
as expected, but when developing locally, the local version of libimagstore is used. Of
course, the version has to be the latest released version.
4. For error handling, we also need to import libimagerror.
5. For easy header-editing, we import toml and toml—query.
6. For error-type creating, we import error—chain.

5.2.3 Interface

7. Then, we have to extend two types:

1. libimagstore :: store :: Store has to be extended so we can implement a CRUD
interface for our special entries.

2. libimagstore :: store :: Entry has to be extended so we can get our stored numbers
in a convenient way.

Our interface should roughly look like this:

store.get_stored_number (”5”) —> Result<FileLockEntry, _>
store.store_number (”5”) —> Result<FileLockEntry , _>
store.delete_number (757) —> Result <(), >

You notice that the Store returns FileLockEntry objects rather than Entry objects. And
that’s ok. A FileLockEntry is a Entry, but ensures that we are the only ones editing that
entry. So, we have to implement our number-storing-interface on Entry as well:

entry.get_number () —> Result<usize>
entry .set_number (usize) —> Result <()>

All those “extensions” are implemented as traits which are then implemented for Store and
Entry.

Normally, we create new files for that, as well as for the error types we need:

e /lib /domain/libimagnumberstorage/src/store.rs
e /lib /domain/libimagnumberstorage/src/entry.rs
e /lib /domain/libimagnumberstorage/src/error.rs

where store.rs contains a trait NumberStorage and entry.rs contains a trait NumberEntry.
error.rs contains the invocation of the error_chain!{} macro. Error types from libimagstore
and others are linked in.

0.8.0 May 2018

imag User Documentation CONTENTS

6 Modules

A module is a functionality of the program. There is a huge list of modules available in the
imag core distribution.

Some of the modules shipped with imag cover core functionality such as linking, tagging or
references to files outside of the store or even the store interface itself. Others cover things
like diary, notes, wiki or bookmarks. These are also called “domains”.

We try really hard to offer a consistent commandline user interface over all of these modules.

The following sections describe each module in detail, including its purpose and its provided
functionality.

6.1 Bookmarks

The Bookmarks module is for keeping URLs as bookmarks, tagging and categorizing them
and finally also open them in the browser.

6.2 Category

A tool to create categories and set/get them for entries.

The difference between a category and a tag is that a category must exist before it can be
used and all entries of a category are linked to the “category entry” internally.

6.3 Diary

The diary module is for keeping your diary notes.

The diary module giv3s you the possibility to write your diary in imag. It offers daily,
hourly and minutely entries (the latter beeing more like a private tumble-blog).

Exporting the diary is possible, so one can write it in markdown and later pass that to
pandoc, if desired, to generate a website or book from it.

6.4 Edit

The imag—edit command is for simply editing store entries with the $EDITOR.
It is based on libimagentryedit (Section [7.7)).

6.5 Init

This is the only imag—* command which does not set up a runtime and check whether the
store is available. This command can be used to set up a imag store.

It also puts a default configuration in the right place and initializes a git repository, if there
is a git command in $PATH (via calling git on the commandline, not via libgit2 or some
other library).

0.8.0 May 2018

imag User Documentation CONTENTS

6.6 Link

The linking module imag—link is one of the plumbing modules. It offers the possibility to
link entries in the store.

It also offers the functionality to link to external sources. This functionality can be used
to link to external URLs, but the bookmarking module should be used to do this (see

Section .

The linking module offers functionality to add, remove and list both internal (store entry
to store entry) and external (store entry to URL) links.

6.6.1 Internal linking
6.6.2 External linking

A store entry can only have one external link. Therefor, when you create an external link,
the linking module creates a new entry in the store which links to this URL. The linking
module then links you entry with this new entry by using an internal link. This way one
entry can have multiple external links attached to it and external links are deduplicated
automatically.

6.7 Log

3

The “imag-log” module is a lightweight interface to the “imag-diary” command.

It is intended as a tumbeblog-like diary, where one does not care to fire up an editor and
type in a long text, but rather type a few words and forget about it:

6.7.1 Usage

Logs can be created via an entry in the configuration file in the section log:

[log]
logs = [”work”, ”"hobby”, ”"music”]
default = "hobby”

The default key is required and the name which is used here must appear in the logs array.

In the above configuration snippet, the logs work, hobby and music are created. The user
may now log to one of these logs with:

imag log —to <logname> ”Some message”

or

imag log —t <logname> ”Some message”
or, to the default log:
imag log ”Some message”

Logs can be read by naming the log:

imag log show work

0.8.0 May 2018

imag User Documentation CONTENTS

which prints one log per line (including time it was logged).

6.8 Mails

The Mails module implements a commandline email client. Emails can be written (via
$EDITOR) and viewed, also in threads. Emails can be crawled for creating new contacts.

A Text User Interface is not planned, but might be there at some point.

The mail module implements a minimal Email client. It does not handle IMAP syncing or
SMTP things, it is just a viewer for emails (a MUA).

The goal of the initial implementation is only a CLI, not a TUI like mutt offers, for example
(but that might be implemented later). As this is an imag module, it also creates references
to mails inside the imag store which can be used by other tools then (for example imag—link
to link an entry with a mail - or the imag entry representing that mail).

So this module offers functionality to read (Maildir) mailboxes, search for and list mails
and mail-threads and reply to mails (by spawning the SEDITOR).

Outgoing mails are pushed to a special directory and can later on be send via imag—mail
which calls a MTA (for example msmtp) and also creates store entries for the outgoing

mails.

6.8.1 CLI

The CLI of the imag-mail module is planned as follows:

imag mail track <path> [opts...] # track a new mail, mail file passed as p
imag mail scan <path> [opts...] # scan a maildir and track all untracked
imag mail box <name|path> # work with the mailbox specified by <nam
imag mail list <args...> # list mails in a given mailbox for a giv
imag mail show <args...> # open new mails in the pager

imag mail thread list <args...> # list mails from a thread

imag mail thread show <args...> # open new mails from a thread in the pag
imag mail new <args...> # craft a new mail and safe it in the <ou
imag mail send <args...> # send emails from the outgoing folder, o
imag mail mv <srcbox> <dstbox> # move a mail (or thread) from one mailbo

6.9 Notes

The Notes module is intended to keep notes. These notes can be inserted as plain text,

markdown or other markup languages.

The notes module offers:

e adding, removing and settings of tags

e listing notes, optionally filtered by

— tags

0.8.0

May 2018

imag User Documentation CONTENTS

— grepping through note content and listing

% the matches
* files with matches

e opening a note via xdg—open (rendered as HTML if content is written in a markup
language)

6.10 Reference

The Reference module.

6.11 Store

The Store module.

6.12 Tagging

The Tagging module.
A valid tag matches the regex [a—zA—Z][0—9a—zA—Z]*.

6.13 Timetrack

The Timetrack module implements a timewarrior-like timetracking functionality for imag.

Each timetracking is a ‘tag’ which can be started and stopped. These tags are no tags as
in imag-tag, but timetracking-tags.

Summaries can be printed, also filtered by tags if desired.

6.14 Todo

The Todo module implements taskwarrior functionality by integrating taskwarrior itself into

imag.

Each taskwarrior task s referenced from imag and represented as imag entry, thus making
it linkable by other imag entries.

6.15 View

The View module.

6.16 Wiki

The Wiki module provides a personal wiki implementation.

The wiki entries are markdown-formatted files in the imag store. All entries are automati-
cally searched for links and those links are automatically added to the header (or as external
link, depending on the format).

0.8.0 May 2018

© 0 N S Ok W NN

e e e e e
ST W N = O

imag User Documentation CONTENTS

Wiki entries can have no or one category and a arbitrary number of tags. Entries can be
listed (as a “tree” shape) and filtered by content, category and tag.

7 Libraries

This section of the documentation is only relevant for developers and you might skip it if
you're only a user of the imag tool.

The following sections contain a short documentation on what the several libraries are
supposed to do. It is generated from the README.md files of each library and only
gives a general overview what can be done with the library. For a more comprehensive
documentation of the library, one might consult the appropriate documentation generated
from the source of the library itself.

The documentation of the libraries is sorted alphabetically.

7.1 libimagbookmark

This library crate implements functionality for bookmarks.

It uses libimagentrylink to create external links and therefor deduplicates equivalent exter-
nal links (libimagentrylink deduplicates - you cannot store two different store entries for
https://imag—pim.org in the store).

It supports bookmark collections and all basic functionality that one might need.

7.2 libimagcontacts

The contact library basically only creates references to the actual vcard files, though it also
can parse (via the vobject crate) the information and return it from an entry directly.

The architecture of indirections is as follows:

|
T
|
| Store, as ContactStore
|
|
I

Provides access to

I
T
|
|
|
\4

(FileLock)Entry as Contact

which is actually a:

(FileLock)Entry as Ref

0.8.0 May 2018

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

imag User Documentation CONTENTS

refers to

|
T
|
|
|
v

I }
| |
| vcard file (outside store) |
| |
I %

contains

I
T
|
|
|
\4

i 1
| |
| vcard data |
| |
% %

As the library is build upon libimagentryref, it does not create a new subcollection in the
store /contacts, but uses the infrastructure of libimagentryref which automatically puts all

references in /ref.

7.3 libimagdiary

This library crates implements a full diary.

One can have one or more diaries in the store, each diary can have unlimited entries.

7.3.1 Future plans

The diary should be able to provide daily, hourly and even minutely diary entries, so one
can use the diary as normal “Dear diary, today...”-diary, or more fine-grained and more

like a journal.

The internal file format as well as the store-path generation for this module is prepared for
such functionality.

7.4 libimagentryannotation

This library provides annotation functionality for entries.

Annotations are normal Store entries, but their header at annotation.is_annotation is set to
true.

Annotations are linked to an entry (as in libimagentrylink).

0.8.0 May 2018

imag User Documentation CONTENTS

7.4.1 Library functionality

The library features two traits: One to extend an Entry with annotation functionality and
another one for extending the Store with functionality to get annotations of an entry and
all annotations in the store.

7.5 libimagentrycategory

This library provides category functionality for entries.

7.6 libimagentrydatetime

Provides date/time functionality for entries.

7.7 libimagentryedit

Provides edit (as in spawning an $EDITOR) functionality for entries.

7.8 libimagentryfilter

Helper library to filter lists of entries by certain predicated. Offers filters for filtering by
header values and other predicates, plus this library offers logical operants to combine filters.

A commandline-to-filter DSL is planned for this, so commandline applications can use this
to implement a uniform filter interface.

7.9 libimagentrylink

Linking library for linking entries with other entries. Used for “imag-link”, the commandline
utility, but intended for use in other binaries and libraries as well.

7.10 libimagentrymarkdown

Helper crate to add useful functionality in a wrapper around hoedown for imag.

Adds functionality to extract links, parse content into HTML and other things which might
be useful for markdown rendering in imag.

7.11 libimagentryref

This library crate contains functionality to generate references within the imag store.

A reference is a “pointer” to a file or directory on the filesystem and outside the store.
It differs from libimagentrylink /external linking as it is designed exclusively for filesystem
references, not for URLs.

A reference is created with a unique identifier, like a hash. The implementation how this
hash is calculated can be defined by the user of libimagentryref.

0.8.0 May 2018

https://crates.io/crates/hoedown

imag User Documentation CONTENTS

So this library helps to resemble something like a symlink.

7.11.1 Usage

Users have to implement the UniqueRefPathGenerator trait which should implement a
hashing functionality for pathes.

7.11.2 Limits

This is not intended to be a version control system or something like that. We also can not
use real symlinks as we need imag-store-objects to be able to link stuff.

7.11.3 Usecase

This library offers functionality to refer to content outside of the store. It can be used to
refer to nearly static stuff pretty easily - think of a Maildir - you add new mails by fetching
them, but you mostly do not remove mails. If mails get moved, they can be re-found via
their hash, because Maildir objects hardly change. Or because the hash implementation
which is used to refer to them hashes only the Message—Id and that does not change.

7.11.4 Long-term TODO

Not implemented yet:

e [| Re-finding of files via their hash. This must be implemented with several things
in mind * The user of the library should be able to provide a way how the filesystem
is searched. Basically a Functor which yields pathes to check based on the original
path of the missing file. This enables implementations which do only search a certain
subset of pathes, or does depth-first-search rather than breadth-first-search.

7.12 libimagentrytag

Library for tagging entries. Used in “imag-tag” but should be used in all other modules
which contain tagging functionality, so the backend and frontend look the same for all
modules.

7.13 libimagentryutil

This library contains utilities for working with libimagstore :: store :: Entry objects where
the functionality does not necessarily belong into libimagstore.

7.14 libimagentryview

Provides viewing (as in piping to stdout, opening in $EDITOR or in $BROWSER) func-
tionality for entries.

0.8.0 May 2018

imag User Documentation CONTENTS

7.15 libimagerror

In imag, we do not panic.

Whatever we do, if we fail as hard as possible, the end-user should never ever see a backtrace

from a panic!().

Anyways, the user might see a error trace generated by imag. That is because imag is
software for power-users, for nerds (I use the term “nerd” because for me it is a good thing
- I do not want to offend anyone by using it). This target group can read backtraces
without getting confused. 10O Error and Permission denied Error are things that nerds
can understand and they already know what to do in the most obvious cases (such as
Permission denied Error).

This library crate is for generating error types and handle them in a nice way. It can be seen
as mini-framework inside imag which was written to work with error types in a specified
way. All imag crates must use this library if they can return errors in any way, except the
libimagutil - which is for the most basic utilities.

7.16 libimaghabit

The habit library implements a habit tracker.

A habit can be instantiated with a name and a time-period in which it should be fullfilled
(eg. daily, ever 3 days, weekly...).

The module offers ways to generate statistics about habits.

7.17 libimaginteraction

A crate for more general interaction with the user (interactive commandline interface).

Offers functions for asking the user Y/N questions, for (numeric) values, etc.

7.18 libimaglog

A small extension over libimagdiary which strips down the functionality of libimagdiary to
some defaults for writing a log (a tumbleblog like diary) with rather short messages.

Provides only basic functionality over libimagdiary, most notably the “log.is_log” header
entry, so the imag—log CLI can distinguish between “logs” and “diary entries”.

7.19 libimagmails

The mail library implements everything that is needed for beeing used to implement a mail
reader (MUA).

It therefor providea reading mailboxes, getting related content or mails, saving attachements
to external locations, crafting new mails and responses,. . .

0.8.0 May 2018

imag User Documentation CONTENTS

It also offers, natively, ways to search for mails (which are represented as imag entries) via
tags, categories or even other metadata.

For more information on the domain of the imag—mail command, look at the documentation

of the Section [6.8] module.

7.20 libimagnotes
7.21 libimagrt

This library provides utility functionality for the modules and the binary frontends, such as
reading and parsing the configuration file, a builder helper for the commandline interface
and such.

It also contains the store object and creates it from configuration.

the libimagrt :: runtime:: Runtime object is the first complex object that comes to live in a
imag binary.

7.21.1 Long-term TODO

e [| Merge with libimagstore

7.22 libimagstore

The store is the heart of everything. Here lives the data, the complexity and the performance
bottleneck.

The store offeres read/write access to all entries.

The store itself does not offer functionality, but has a commandline interface “imag-store”
which can do basic things with the store.

7.22.1 Long-term TODO

e []| Merge with libimagrt

7.23 libimagtimetrack

A library for tracking time events in the imag store.

7.23.1 Store format

Events are stored with a store id like this:

/timetrack/<insert —date—year>/<insert —date—month>/<insert —date—day>/<insert

Timetrackings contain

e a comment (optional, free text)

0.8.0 May 2018

imag User Documentation CONTENTS

e a start date
e an end date
e a tag

by default and might be extended with more header fields as one likes.
The header of a timetrack “work” entry looks like this:

[event]

tag = "work”

start = 72017—01-02T03:04:05”
end = 72017—-01-02T06:07:08”

Normal tags (as in libimagentrytag) are explicitely not used for tagging, so the user has the
possibility to use normal tags on these entries as well.

The tag field is of type string, as for one tag, one entry is created. This way, one can track
overlapping tags, as in:

imag
imag
imag
imag
imag
imag

timetrack
timetrack
timetrack
timetrack
timetrack
timetrack

start foo
start bar
stop foo
start baz
stop bar
stop baz

The end field is, of course, only set if the event already ended.

7.23.2 Library functionality

The library uses the libimagentrydatetime::datepath::DatePathBuilder for building Storeld
objects.

The library offers two central traits:

e TimeTrackStore, which extends a Store object with functionality to create FileLockEntry
objects with a certain setting that is used for time-tracking, and

e TimeTracking, which extends Entry with helper functions to query the entry-metadata
that is used for the time tracking functionality

The library does not provide functionality to implement imag—timetrack or so, as the core
functionality is already given and the commandline application can implement the missing
bits in few lines of code.

Aggregating functionality might be provided at a later point in time.

7.24 libimagtodo

The library for the todo module.

Whether this wraps taskwarrior or implements a todo tracking mechanism in imag itself is
to be defined. Probably the latter.

0.8.0 May 2018

© 00 ~J O T B W N

DN N DNNNDNRE P R 2 2 BB 2 B &
O Tl W NP O O© 0 O O i Wi — O

imag User Documentation CONTENTS

7.25 libimagutil

Utility library. Does not depend on other imag crates.

7.26 libimagwiki

The wiki library implements a complete wiki for personal use.
This basically is a note-taking functionality combined with linking.
7.26.1 Layout

The basic structure and layout is as simple as it gets:

/wiki holds all wikis. The default wiki is /wiki/default. Below that there are entries. Entries
can be in sub-collections, so /wiki/default/cars/mustang could be an entry.

WikiStore

2
=

=
=
-+
—
<
4 A — 4

_—
|
|
|
|
|

The store offers an interface to get a Wiki. The wiki offers an interface to get entries from
it.

Each Entry might link to a number of other entries within the same wiki. Cross-linking
from one wiki entry to an entry of another wiki is technically possible, but not supported

0.8.0 May 2018

imag User Documentation CONTENTS

by the Entry itself (also read below).

When creating a new wiki, the main page is automatically created.

7.26.2 Autolinking

The Entry structure offers an interface which can be used to automatically detect links in
the markdown. The links are then automatically linked (as in libimagentrylink).

8 Contributing to imag

So you want to contribute to imag! Thank you, that’s awesome!

All contributors agree to the [developer certificate of origin| by contributing to imag.

8.1 Without Github

Contributing without a github account is perfectly fine and actually encouraged as we try
to move away from github step by step. Feel free to contact jus via our mailinglist| and/or
submit patches via mail (use git format—patch and git send—email, always add a cover
letter to describe your submission).

Also ensure that each commit submitted via email has|a “Signed-off-by:” line. By adding

that line, you agree to our |[developer certificate of originl If you do not add the “Signed-

off-by:” line, I reserve the right to kindly reject your patch.
Once I am okay with your patchset, I will submit it as PR in the github repository (as long

as we're using github), so CI can test it. I might come back to you if something broke in
CI or someone has a suggestion how to improve your PR. I will keep you as author of the
commits.

8.2 Finding an issue

Finding an issue is simple: We have a special label in our issues section| for easy-to-solve
issues. You can start there, don’t hesitate to ask questions if you do not understand the
issue comment! If there are currently no issues with that tag, just browse the issues or the
code. .. you’ll always find things to improve!

Also, if you’ve found bugs or outdated stuff in our documentation, feel free to file issues
about them or even better: Write a pull request to fix them!

8.3 Prerequisites

The prerequisites are simple: cargo and rustc in current version (stable) or newer (we do
not use nighly features though).

Build dependencies for building are listed in the default.nix file, though you do not have
to have the nix package manager installed to build imag. Everything else will be done by

0.8.0 May 2018

http://imag-pim.org/mailinglist/
https://stackoverflow.com/questions/1962094/what-is-the-sign-off-feature-in-git-for
https://github.com/matthiasbeyer/imag/issues?q=is%3Aissue+is%3Aopen+label%3Acomplexity%2Feasy
http://git.imag-pim.org/imag/tree/default.nix

imag User Documentation CONTENTS

cargo.

Note that this software is targeted towards commandline linux users and we do not aim to
be portable to Windows or Mac OSX (though I wouldn’t mind merging patches for OS X
compatibility).

If you want to build the documentation (you don’t have to) you’ll need:

pandoc
pandoc-citeproc

texlive

Imodern (font package)

(gnu) make

All dependencies are installable with the nix package manager by using a nix—shell, if you
have the nix package manager installed on your system.

8.4 Commit guidelines

Please don’t refer to issues or PRs from inside a commit message, if possible. Make sure your
PR does not contain “Fixup” commits when publishing it, but feel free to push “Fixup”
commits in the review process. We will ask you to clean your history before merging! If
you're submitting via patch-mail, I will do the fixup squashing myself. If it fails I will come
back to you.

)

Make sure to prefix your commits with ”doc: ” if you change the documentation. Do not

change document and code in one commit, always separate them.

If your changes are user-visible (new commandline flags, other semantics in the command-
line, etc), make sure to add a note in the CHANGELOG.md file (in the same commit if it
is a simple change). If it is a bugfix, do add the changelog entry in a new commit (best
would be: one commit for a testcase which shows the bug, one commit for the fix, more if
the fix is complicated, and one commit for the changelog entry). Changelog entries for bug
fixes should be extra commits, because backporting bugfixes gets simpler this way.

We do not follow some official Rust styleguide for our codebase, but we try to write minimal
and readable code. 100 characters per line, as few lines as possible, avoid noise in the
codebase, ... you get it.

Not all of your commits have to be buildable. But your PR has to be before it will be
merged to master.

8.5 Feature branches

Use feature branches. If you could name them “/”, for example “libimagstore/add-debugging-
calls”, that would be awesome.

8.6 Code of Conduct

We use the same code of conduct as the rust community does.

0.8.0 May 2018

https://www.rust-lang.org/conduct.html

imag User Documentation CONTENTS

Basically: Be kind, encourage others to ask questions - you are encouraged to ask questions

as well!

8.7

Developer Certificate of Origin

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer’s Certificate of Origin 1.1
By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(¢) The contribution was provided directly to me by some other
person who certified (a), (b) or (c¢) and I have not modified
it.

(d) T understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it , including my sign—off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

9 Changelog

This section contains the changelog.

0.8.0

May 2018

imag User Documentation CONTENTS

We try to include a changelog line in each pull request, to make sure the changelog is up to
date when releasing a new version of the codebase. Make sure to append the new change
to the list, do not prepend it.

The “Major” section of each section includes huge changes in functionality and interfaces
(but not necessarily user-facing ones), whereas the “Minor” section contains only small stuff.
Some things, like typo fixes, version string updates and such are not stated in the changelog
(though updating of dependencies is). Please note that we do not have a “Breaking changes”
section as we are in Version 0.y.z and thus we can break the API like we want and need to.

9.1 0.8.0

After the last release (0.7.0), we changed how we keep our changelog from manual adding
things to the list, to using git —notes. Hence, there’s no categorization anymore.

e Add imag-diary functionality to list existing diaries

e libimagentryviews StdoutViewer is now able to wrap lines

e imag—view can wrap output now

e imag tag is now able to read store ids from stdin

e libimagrt automatically suggests “imag init” if config is not found

e A changelog-generation script was added to the scripts/ directory

e Fix: libimagdiary did not return the youngest, but the oldest entry id on :: get_youngest_entry_id ().
e Fix: imag-view should not always wrap the text, only if -w is passed
e Fix: imag—log show should order by date

e imag does not inherit stdout if detecting imag command versions.

e The Store:: retrieve_for_module () function was removed.

e imag—git was added, a convenient way to call git in the imag RTP.

e libimagentryview was refactored. The crate was refactored so that the “sink” - the
thing the view should be written to - can be passed.

e A imag—view feature was added where markdown output can be formatted nicely for
the terminal
e The libimagstore lib got its stdio backend removed.

First, imag store dump was removed as it was based on this feature. Then, libimagrt
got the ability removed to change the store backend to stdio. After that, we were able
to remove the stdio backend and the JSON mapper functionality that came with it.

This shrinked the codebase about 1kloc.

The imag store dump feature can be reimplemented rather simply, if desired.

0.8.0 May 2018

imag User Documentation CONTENTS

e imag—view is now able to seperate printed entries with a user-defined character (de-
fault: “-”)

e Fix: Deny non-absolute import pathes in imag-contact

e libimagcontact is not based on libimagentryref anymore
This is because we encountered a serious problem: When syncing contacts with an
external tool (for example vdirsyncer), the files are renamed on the other host. Syncing
the imag store to the other device now creates dead links, as the path stored by the
ref is not valid anymore.
Now that libimagcontact is not based on libimagentryref anymore, this issue does not
exist anymore. libimagcontact stores all contact information inside the store now.
imag-contact was rewritten for that change.

e Fix: imag-contact does only require the name field, all others are optional now

e Fix: imag-contact automatically creates a UID now

e libimagcategory was rewritten
It creates entries for categories now and automatically links categorized entries to the
“category” entries.
Its codebase got a bit simpler with these changes, despite the increase of functionality.

e imag—contact automatically generates/warns about missing file extension

e libimagcontact does export email properties now.
imag—contact reads email properties and can output them in its JSON output. This
is helpful for passing email adresses to external tools like mutt.

e libimagentrygps and imag—gps work with 64 bit signed values now
Both the library and the command use 164 (64 bit signed) for GPS value fragments
now.
Also: The imag—gps tool does not require a “second” value fragment now, it defaults
to 0 (zero) if not present.

e The filters dependency was updated to 0.3

e libimagentryfilter filters headers not with a failable filter.

e imag—diary has no longer an edit command. imag—edit shall be used instead.

e libimagtodo got a error handling refactoring, so that more chaining happens.

e Errors in libimagstore contain more details in the error message about what Storeld
caused the error Unused errors were removed.

e The Store API got functions to get data about the internal cache and flush it

e imag-diagnostics flushes the cache each 100 entries processed

0.8.0 May 2018

imag User Documentation CONTENTS

e The iterator interface of libimagstore was refactored

Originally, the iterator interface of libimagstore did not return errors which could
happen during the construction of a Storeld object. This was refactored, effec-
tively changing the StoreldIterator type to not iterate over Storeld anymore, but
over Result<Storeld, StoreError>. That cause a lot of changes in the overall iterator
interface. All iterator extensions (like . into_get_iter () for example) had to be rewrit-
ten to be applicable on iterators over Result<Storeld, E> where E is a generic that
can be constructed From<StoreError>.

This all was triggered by the fact that Store:: entries () did a . collect ::<Vec<_>>()
call, which is time consuming. Consider a tool which calls Store:: entries () and then
only use the first 10 entries returned (for some user-facing output for example). This
would effectively cause the complexe store to be accessed (on the filesystem level),
which could be thousands of entries. All relevant pathes would have been written to
memory and then be filtered for the first 10. Not very optimized.

After this was done, the store interface changed. This caused a lot of changes in
almost all crates.

Internally, in the store, the FileAbstraction object is not passed around in a Box
anymore, but in an Arc, as a intermediate (store-private) iterator type needs to access
the backend for file-system level checks. This is not user-facing.

In the process, the Store :: reset_backend() interface was removed (as this is no longer
supported and should’ve been removed already). Rewriting it just for the sake of this
patch and then removing it would’ve been to difficult and time- consuming, hence it
was simply removed during that patchset.

The overall performance was somewhat improved by this patchset. A rather non-
scientifically performed test shows increased performance in debug builds (but slowing
down in release builds).

The test was done on master before the merge and after the merge, with a debug
build and a release build. Each time, imag—ids was executed 10 times with its output
piped to /dev/null. The local store used for this contained 5743 entries during the
measurements and was not changed in between. time showed the following data (real,
user, sys):

Before, Debug build:

0,075;0,052;0,023
0,077;0,051;0,026
0,083;0,063;0,020
0,079;0,054;0,025
0,076;0,057;0,019
0,077;0,059;0,017
0,074;0,052;0,022
0,077;0,045;0,032
0,080;0,060;0,020
0,080;0,058;0,022

After, Debug build:

0.8.0 May 2018

imag User Documentation

CONTENTS

0,071;0,050;0,021
0,073;0,053;0,021
0,075;0,060;0,015
0,076;0,047;0,029
0,072;0,055;0,018
0,077;0,061;0,016
0,071;0,053;0,019
0,070;0,053;0,016
0,074;0,050;0,025
0,076;0,052;0,024

Before, Release build:

0,034;0,015;0,019
0,034;0,017;0,017
0,034;0,019;0,015
0,033;0,012;0,022
0,034;0,011;0,023
0,034;0,015;0,019
0,034;0,010;0,024
0,033;0,015;0,018
0,037;0,017;0,020
0,033;0,013;0,021

After, Release build:

0,037;0,015;0,022
0,036;0,016;0,020
0,036;0,018;0,018
0,036;0,014;0,022
0,036;0,015;0,021
0,036;0,018;0,018
0,037;0,016;0,020
0,036;0,018;0,018
0,039;0,015;0,023
0,037;0,016;0,021

The Store :: walk() function was removed.

imag—ids got the ability to filter by header

direction of a generic filter language.

imag—category was added

The language introduced here is subject to change, but a good first step into the

Language documentation was added as well and is printed with imag ids ——help.

The standard CLI interface in libimagrt was updated and validations were added

0.8.0

May 2018

imag User Documentation CONTENTS

9.2 0.7.1

Bugfix release for fixing:

e libimagdiary did not return the youngest, but the oldest entry id on :: get_youngest_entry_id ().
e imag—view should not always wrap the text, only if -w is passed
e imag—log show should order by date

imag does not inherit stdout if detecting imag command versions.
imag—contact import does only allow absolute pathes
imag—contact has most fields optional now, only name is required
imag—contact automatically creates UID

imag—contact automatically generates/warns about missing file extension

9.3 0.7.0

e Major changes

— imag—timetrack list ——from/——to now have kairos support - that means that
complex ——from/——to arguments (like yesterday or today—2weeks) are now
possible

— libimagerror got a major refactoring and uses ChainedError from error—chain
for logging errors now.

— libimagentryref and all libraries using it were rewritten. libimagentryref was
rewritten to make its API simpler and yet more powerful. Also because it used
to put entries under a “ref” collection in the store, but users of the library really
should be be able to put entries under custom collections.

— imag store ids was replaced by imag ids.

— libimagentrylist was removed. Its functionality was inconvenient to use and ugly
to implement. Its API was cumbersome. Listing of entries shall be implemented
without it.

— libimagcontact is now able to fetch all contacts from the store.

— libimagcontact takes the hash from the vcard object (UID) now.

— imag—contact got a find command, which matches in fullname, email and address
and either shows or lists the found contacts

— imag—contact list and imag—contact find is now able to print the output as
JSON.

— imag—edit can now read store ids from stdin, so imag ids | fzf | imag edit —I
is now a thing.

— imag ids does not print the path of the store. Can be turned on using comman-
dline flag.

— imag—habit today ——done and imag—habit status ——done was added for show-
ing habits which are already done.

— libimagrt allows external subcommands now in the default clap app builder
helper. It also provides a helper for handling unknown subcommands: Runtime::handle_unknown _st
See docs for details.

0.8.0 May 2018

imag User Documentation CONTENTS

imag—link list prints output in ascii-table now, use ——plain to print as plain
text.

The build script automatically generates autocomplete scripts for bash, fish and
zsh now when compiling the imag command.

libimagwiki and imag—wiki were introduced.

e Minor changes

A license-checker was included into the CI setup, which checks whether all “.rs”-
files have the license header at the top of the file

imag—link does not allow linking the entry to itself

imag sorts available commands alphabetically now

imag has a new subcommand help for consistency with other tools

imag—grep does not print grep statistics when only files with matches are listed
The ”Ok” output which was printed on success was removed from all commands
imag—log show was aliased to imag—log list

imag—s* ——version shows git describe output if binary was compiled in “debug”
mode.

imag—diary supports “daily” diaries now.

imag—contact joins multiple emails with “,” now

imag—tag commandline was rewritten for positional arguments.

libimagrt automatically takes “rt.editor” into account when building editor ob-
ject

libimagentryref got a utility function for making an entry a ref.

libimaghabit got Habit:: instance_exists_for_date ()

imag contact find understands ——format now.

imag contact uses “,” as seperator for output of lists of values.

imag contact find ——id / ——full—id was added for printing Store Id / Filepath
of found contacts.

imag view can now view multiple entries at once

imag view —I reads store ids from stdin now.

libimagstore iterators have less restricting lifetimes now

libimagentrygrep was introduced, a crate for seaching in the header/content parts
of an entry.

imag—ids can now filter by collection

All crates use “clap” with the “wrap_help” feature now.

e Bugfixes

imag does not panic anymore when piping and breaking that pipe, for example
like with imag store ids | head —n 1. For that, libimagerror got a Result exten-
sion which can translate errors into exit codes and one for unwrapping or exiting
with the Err(i32) from the result.

libimagdiary did not add the header markers on diary entries.

imag—diary used the default diary rather than the CLI setting. Now it rather
uses the CLI setting and only if that is not present, it uses the default.
libimagerror printed errors with write!() rather than writeln!() when tracing.

0.8.0

May 2018

imag User Documentation CONTENTS

— A parsing error in libimagstore, which caused the parsing of entries with a line
“—" in the content part to fail, was fixed.

— The patch explained by the point above introduced a bug which caused entries
to be read as a single line, which was fixed as well.

— imag—diary create ——timed did not work as expected

— libimagstore got another fix with the file parsing, as the std :: str :: Lines iterator
takes empty lines as no lines.

— libimagentryedit fixed to inherit stdin and stderr to child process for editor com-
mand.

— libimagrt produced the editor command without taking arguments into account.

— libimagentryref got a fix where the buffer for the hash calculation was not allo-
cated properly.

— libimagstore :: store :: Store :: create overwrote existing entries.

— libimaghabit :: habit :: Habit Template did not link new instances.

— imag—init creates ~/.imag but not ~/.imag/store.

— libimagrt got a bugfix in the editor command setup where command arguments
were not processed correctly which could result in calling the editor with an
empty argument (vim ” 7).

— imag—grep did not count in all cases.

— libimagdiary sorts entries by date when viewing/listing them.

— A libimagentryref bug was fixed where the wrong variable was passed as path to
the referenced file, causing all tools based on this lib to break.

— libimagrt had a bug where the logging level was set to “Info” as soon as “—

verbose” was passed, but the value of “~verbose” was not even checked.

94 0.64
Bugfix release for fixing:

e libimagrt produced the editor command without taking arguments into account.

e imag—init creates ~/.imag but not ~/.imag/store.

e Fix editor setup in libimagrt to use /dev/tty as stdin for editor, so terminal-editors
do not trash the terminal

9.5 0.6.3
Bugfix release for fixing:

e libimagstore got another fix with the file parsing, as the std :: str :: Lines iterator takes
empty lines as no lines.

9.6 0.6.2
Bugfix release for fixing:

e imag—diary did not recognize the “-d DIARY” setting.

0.8.0 May 2018

imag User Documentation CONTENTS

13 7

e A parsing error in libimagstore, which caused the parsing of entries with a line “—
in the content part to fail, was fixed.

The bugfix above introduced another bug which caused entries to be rewritten in one
line when accessing them. This was fixed.

e imag—diary did not properly set “minute” and “second” when creating “hourly” or
“minutely” entries.

Version numbers for all crates as well as in the docs were updated to “0.6.2”.

9.7 0.6.1

Bugfix release for fixing two severe bugs in imag—init:

e imag—init created the git directory inside the imag directory. Fixed by defaulting to
{imag directory}/.git.

e imag—init was buggy as it did not include the imagrc.toml file in the release, thus
building it from crates.io failed

9.8 0.6.0

e Major changes

— The config infrastructure of libimagstore was removed, as it was unused.

— The iterators of libimagstore were improved and are now abstract over all iterator
types. For example, all iterators over Storeld can now be transformed into a
StoreGetlterator.

— imag—log was introduced

— imag—init was introduced

— libimagdiary supports second-granularity now.

— libimagstore :: store :: Store :: retrieve_copy was renamed to libimagstore :: store :: Store :: get_copy,
which describes the semantics of the function way better.

— libimagentryutil was introduced, a library for helpers for libimagstore :: store :: Entry
handling and writing extension-writing.

— imag—edit was introduced

— imag—diary got second-granularity support in the CLI.

e Minor changes

— Internals were refactored from matching all the things into function chaining

— The toml—query dependency was updated to 0.5.0

— imag—timetrack list lists with a table now

— imag—timetrack stop now stops all running tags if none are specified

— The toml—query dependency was updated to 0.6.0

— ResultExt::map_err_trace_exit () was removed in favour of ResultExt::map_err_trace_exit_unwrap().
— imag—view shows content by default now. Use —C to hide the content.

— kairos dependency was updated to 0.1.0

e Bugfixes

0.8.0 May 2018

imag User Documentation CONTENTS

— libimagbookmark contained a type which wrapped a FileLockEntry from libimagstore.
This was considered a bug and was fixed.

— We depended on a crate which was licensed as GPLv2, which would yield imag
GPL as well. The dependency was removed.

— The imag crate prints the “command filed” error message to stderr now. It also
prefixes the subcommand with imag—<command> for better user experience.

— libimagnotes did not set the note name in the header of the note.

— imag—mv automatically fixes links when moving an entry in the store.

— imag—log listed non-log entries (normal diary entries) before, was changed to
only list log entries.

9.9 0.5.0

e Major changes

— imag—counter and libimagcounter was removed.

— imag—mv was introduced

— imag—view uses positional args now

— imag—view uses the configuration file now to find the command to call for viewing
the entry. This way one can view the entry in an editor or the browser or on the
toaster.

— The logger is now able to handle multiple destinations (file and “-” for stderr)

— imag—store can dump all storeids now

— imag—annotate was introduced

— imag—diagnostics was added

— The runtime does not read the config file for editor settings anymore. Specifying
an editor either via CLI or via the $EDITOR environment variable still possible.

— imag—contact was added (with basic contact support so far).

— imag—habit was introduced

— imag—link commandline was redesigned to be easier but with the same features.

e Minor changes

— libimagentryannotation got a rewrite, is not based on libimagnotes anymore.
This is minor because libimagentryanntation is not yet used by any other crate.

— imag now reads the IMAG_RTP environment variable before trying to access
$HOME/.imag for its runtimepath.

— libimagnotification was introduced, though not yet integrated into the CLI tools

e Bugfixes

— Store:: entries () does not yield Storelds which point to directories anymore, only
Storelds pointing to files.

e Stats

— 227 commits
— 51 merge-commits / 176 non-merge commits
— 2 contributors

0.8.0 May 2018

imag User Documentation CONTENTS

— 186 files changed
— 6707 insertions(+) / 3255 deletions(-)

9.10 0.4.0

e Major changes

— The libimagstore :: toml_ext module was removed. The toml_query crate should
be used as a replacement. Its interface only differs in few places from the old
libimagstore :: toml_ext interface.

— The codebase was moved to a more tree-ish approach, where several subdirecto-
ries were introduced for different types of crates

— The documentation got a major overhaul and was partly rewritten

— The logger is now configurable via the config file.

— The error handling of the whole codebase is based on the error_chain now.
libimagerror only contains convenience functionality, no error-generating macros
or such things anymore.

— imag—diary can now use a configuration in the imagrc.toml file where for each
diary there is a config whether entries should be created minutely or hourly (or
daily, which is when specifying nothing).

e New

— libimagentrygps was introduced

— imag—gps was introduced

— imag—grep was introduced

— The imag command now passes all arguments properly to the called subcommand

e Fixed bugs

— The config loading in libimagrt was fixed.

— libimagentrylink used imag as the location for putting links in entries. This is
not allowed because this namespace is reserved for the store itself. This bug was
fixed, links are now located in the links namespace in the header of an entry.

— Store:: delete () did only check the store-internal cache whether an entry exists,
but not the filesystem. This was fixed.

e Minor changes

— If building from a nix—shell, the mozilla rust overlay is expected to be present

— Unused imports in the codebase were removed

— Compiler Warnings were fixed

— We specify inter-dependencies via path and variable now, so one can build the
0.3.0 release from the checkout of the codebase.

The imag binary was refactored and rewritten, the crossbeam dependency was
removed.

The Makefile was removed as cargo is powerful enough to fit our needs
— libimagstore :: storeid :: Storeld :: is_in_collection () was added
— The libimagentrylink is now rudimentarily tested

0.8.0

May 2018

http://git.imag-pim.org/imag/commit/?id=9193d50f96bce099665d2eb716bcaa29a8d9b8ff

imag User Documentation CONTENTS

We compile with rustc 1.17, 1.18, .., nightly

The imag—store binary now uses positional arguments in its CLI

The “toml-query” dependency was updated to 0.3.1

imag—timetrack track is now able to parse “now”, date-only start/stop dates
and date-time start/stop times.

libimagnotes does not longer wrap store types but extend them.

imag—notes uses positional arguments now.

libimagentrylist does not export a CLI helper module anymore.

e Stats

"325 commits

82 merge-commits / 243 non-merge commits

2 contributors

447 files changed

9749 insertions(+) / 7806 deletions(-) (Surely because of the reorganization of
the entire codebase)

9.11 0.3.0

Note: As this file was written after the 0.3.0 release, we simply list the merges here instead

of explaining what changed.

e Merges

d14c972 matthiasbeyer/release-commits-import

f6alc7d matthiasbeyer/make-check

0404b24 matthiasbeyer /update-deps

85e95d1 matthiasbeyer/readme-rewrite

fa64c2d matthiasbeyer/libimagstore/store-id-cmp-without-base
0204081 matthiasbeyer/cargo-ruste-codegen-units

addb420 matthiasbeyer/cargo-workspaces

8bacdb4 matthiasbeyer /libimagref/remove-unused

13ch7aa matthiasbeyer/imag-link /reduce-unwraps

e70fdc6 matthiasbeyer/libimagentrytag/remove-impl-tagable-on-fle
1db063f Stebalien/master

aba7e43 mario-kr/add_shell-completion

002c50a matthiasbeyer /clap-completion

b210b0e matthiasbeyer/libimagstore/entry-eq

felch77 matthiasbeyer/libimagstore/extract-toml-functionality
4cab60a matthiasbeyer /travis-use-old-rustc

0310c21 rnestler/libimagdiary /refactor_from_store_id

9714028 matthiasbeyer/clap-recommend-versions

2003efd matthiasbeyer/imag-mail /init

7c7aad9 matthiasbeyer/libimagentrylink /fix-docu-typo
0dd8498 matthiasbeyer/update-deps

9375¢71 matthiasbeyer /makefile-check-outdated

0.8.0

May 2018

http://git.imag-pim.org/imag/commit/?id=d14c9720e7ff4982ec5c13e011c8c27f3e92ea10
http://git.imag-pim.org/imag/commit/?id=f6a1c7d56f1f559214a97d65dd1870e9f9906d71
http://git.imag-pim.org/imag/commit/?id=0404b24333f7f41cb6821fd11003260ec45799af
http://git.imag-pim.org/imag/commit/?id=85e95d142cc40f18df0da6a08e07ce6873394516
http://git.imag-pim.org/imag/commit/?id=fa64c2d27dc4b9afbfa7d077ed7821e7688e0339
http://git.imag-pim.org/imag/commit/?id=0a040815993803defe79749786adbd01f40b79b2
http://git.imag-pim.org/imag/commit/?id=a4db420fdb43186258a7dc08ffb597a82d11f32a
http://git.imag-pim.org/imag/commit/?id=8bacdb49b9d2826bcf6ab5773ba09c46913ba5a9
http://git.imag-pim.org/imag/commit/?id=13c57aa0cea1071accb00248f28537bf4288af13
http://git.imag-pim.org/imag/commit/?id=e70fdc63c8f566039cf3f1afa910fa1a47430415
http://git.imag-pim.org/imag/commit/?id=1db063f3343ccb8d7a2ea2f1c3acf8eb24d39162
http://git.imag-pim.org/imag/commit/?id=a6a7e43b39979a276243807ac7569ef04e13f9db
http://git.imag-pim.org/imag/commit/?id=002c50a39e2a4e9426b0f8cc4bc7cc0d7ed8d599
http://git.imag-pim.org/imag/commit/?id=b210b0ec3edfc6269baedc2791d780b169975877
http://git.imag-pim.org/imag/commit/?id=fe1c5779634d22913db78b44717559b5a4e7c53f
http://git.imag-pim.org/imag/commit/?id=4ca560af7ff82d4dc9fabc5ef9abc579f288d3d7
http://git.imag-pim.org/imag/commit/?id=0310c2176f342fb42a55b5b3f025843bb8cf6a49
http://git.imag-pim.org/imag/commit/?id=9714028cf3c6c3a1e6b32704030c52d2d82954c1
http://git.imag-pim.org/imag/commit/?id=2003efd70646e121865cf12c4183c37388ad48f3
http://git.imag-pim.org/imag/commit/?id=7c7aad9ea4578ac45e17895f73cf55d9a966b767
http://git.imag-pim.org/imag/commit/?id=0dd849863fbca535525c136a02e47a3f8c394854
http://git.imag-pim.org/imag/commit/?id=9375c71292e8ec57bb6c970992f9f3aa33d54786

imag User Documentation CONTENTS

— 23a80ee matthiasbeyer /imag-link /external-link-remove-arg
— 4a821d7 matthiasbeyer/rust-beta-remove-top-level-cargotoml
— 0ct5640 mario-kr/add_workspace-support

— c96e129 matthiasbeyer/libimagrt /logger-pub

— [2¢4946a matthiasbeyer/remove-for-focus-shift

— 9d7a26b matthiasbeyer/libimagrt /dbg-fileline-opt

— 6dbecbd matthiasbeyer /libimagrt /config-types-pub

— 03a90c9 matthiasbeyer/cleanup-bash-compl-gen

— 6£564b5 matthiasbeyer/love-to-defaultnix

— (ce36b38 matthiasbeyer/fix-imag-bin-build

— cd684b0 matthiasbeyer/travis-opt

— 636bfbb matthiasbeyer/imag-link /list-internal-only

— |1e3193¢ matthiasbeyer/imag-ruby

— [7leladc matthiasbeyer/libimagerror/fix-warnings

— b03d1b5 matthiasbeyer/libimagstore/fix-warnings

— 0a417aa matthiasbeyer/libimagruby /fix-warnings

— 5bea7f8 matthiasbeyer/readme-updates

— ddc49de matthiasbeyer/libimagruby /fix-macro

— df0fa43 matthiasbeyer/imag-tag/remove-warning

— 3c7edcf matthiasbeyer /update-regex

— |15b3567 matthiasbeyer/workspace-fix-missing-doc

— 6585677 matthiasbeyer /libimagentryfilter /remove-unused-import
— 2ca89b7 matthiasbeyer/workspace-fix

— 63ffbf6 matthiasbeyer/libimagstore/eliminate-header-type
— Bffedec matthiasbeyer/remove-warnings

— 4d1282d matthiasbeyer/libimagruby /impl-retrieve-for-mod
— ¢43538d| matthiasbeyer /ruby-build-setup

— 2beb795 matthiasbeyer /revert-871-ruby-build-setup

— |b67b6£5 matthiasbeyer /libimagstore/doc

— dc1cd73 matthiasbeyer/libimag-todos

— bb126d5 matthiasbeyer/libimagruby/api-brush

— |b50334c matthiasbeyer/libimagrt /doc

— 54655b9 matthiasbeyer/libimaginteraction/unpub-fn

— e33ebd2 matthiasbeyer/libimagannotation/init

— f3af9e0 matthiasbeyer/clap-bump

— ef07c2c matthiasbeyer/libimagstore/verify-panic

— a0f581b matthiasbeyer/libimagentryedit /dont-impl-for-fle
— 84bcdcb matthiasbeyer/libimagnote /note-doesnt-need-to-be-tagable
— 85cb954 matthiasbeyer /less-fold-more-defresult

— (c4bd98al mario-kr /makefile_use_workspaces

— 13a0166b matthiasbeyer/libimagruby/error-types

— [5d4ef8e matthiasbeyer/libimagstore/non-consuming-update
— le615ec0 matthiasbeyer/add-libruby-travis-dep

63faf06 matthiasbeyer/fix-warnings
6£6368e matthiasbeyer /travis-fixes

0.8.0 May 2018

http://git.imag-pim.org/imag/commit/?id=23a80ee47f279fa1f5cd70ffab81e82629322dc8
http://git.imag-pim.org/imag/commit/?id=4a821d7b196a4d478cdf51520c4c2939aaa06a81
http://git.imag-pim.org/imag/commit/?id=0cf564091ece3c12ab83b1c5bb8555b1149c3d21
http://git.imag-pim.org/imag/commit/?id=c96e129b40c34a0fd99df3a9bf32285337885a4a
http://git.imag-pim.org/imag/commit/?id=2c4946a82c8eca33b619aeffc8a264566278658f
http://git.imag-pim.org/imag/commit/?id=9d7a26ba3ac42aa89670d032c97e5500ebde0828
http://git.imag-pim.org/imag/commit/?id=6dbecbd397de15727773857121282356cd98986d
http://git.imag-pim.org/imag/commit/?id=03a90c9bf9ae4558842b30d0bce2968879e6efa8
http://git.imag-pim.org/imag/commit/?id=6f564b5223f9ec811f21081db31e16eb77d6d634
http://git.imag-pim.org/imag/commit/?id=ce36b38aa9ef25f8a0cc8f21860102b9950566a2
http://git.imag-pim.org/imag/commit/?id=cd684b04ab696e7456d6ba6e51ebabcf96cb7f0f
http://git.imag-pim.org/imag/commit/?id=636bfbb768f23c92d581ab660fcaa88927c859b1
http://git.imag-pim.org/imag/commit/?id=1e3193ebb2028478aa26efd1b69697cddf00914f
http://git.imag-pim.org/imag/commit/?id=71e1a4cd61ad7748a252c77bb9c9eaa4ab01934e
http://git.imag-pim.org/imag/commit/?id=b03d1b562da4649d56411d21671ec5fc659ff65a
http://git.imag-pim.org/imag/commit/?id=0a417aa3c6b599f067284ed1628d7e3fc5e9a44e
http://git.imag-pim.org/imag/commit/?id=55ea7f8228481a4859b1c2d34f9347b7cd35ee8e
http://git.imag-pim.org/imag/commit/?id=ddc49de0c315f10d7dd085aed3dbd3b88d78343b
http://git.imag-pim.org/imag/commit/?id=df0fa438c578bcf51ada250aea7eda7aed5ded89
http://git.imag-pim.org/imag/commit/?id=3c7edcfb501d1f88df4a5e1d47c8bc1ac441cb20
http://git.imag-pim.org/imag/commit/?id=15b356773f7536dabc8346f79d9887016188e4b1
http://git.imag-pim.org/imag/commit/?id=6585677d3147d338b271fb6477ea324694fa5454
http://git.imag-pim.org/imag/commit/?id=2ca89b73291a33d8209890b762343460ccc68604
http://git.imag-pim.org/imag/commit/?id=63ffbf62de95dfed62d3c41588472c3c8056a5a6
http://git.imag-pim.org/imag/commit/?id=3ffedec8b8d3c785166021543ff69c15c246632c
http://git.imag-pim.org/imag/commit/?id=4d1282d1631e8ff50d9e4ab5bc01590649c712d7
http://git.imag-pim.org/imag/commit/?id=c43538d517855d5d8f6b961de8465ba942917350
http://git.imag-pim.org/imag/commit/?id=2beb79581deca5c9b37cdfd01834f29c3934ecd5
http://git.imag-pim.org/imag/commit/?id=b67b6f53434eb551fa45b50d616f805dd39bc96b
http://git.imag-pim.org/imag/commit/?id=dc1c4733772da76d41af5c5a4e42c4927fb1c9cc
http://git.imag-pim.org/imag/commit/?id=bb126d50a93dc11bcd26fb6601b16cd07cdbfcae
http://git.imag-pim.org/imag/commit/?id=b50334c10f0d72ac65981d5e4dc28e34e9edc382
http://git.imag-pim.org/imag/commit/?id=54655b9bce1ea4367396af5de0c2aa7376a05cea
http://git.imag-pim.org/imag/commit/?id=e33e5d287b961ff79d638d3369ea39b9e8c063a0
http://git.imag-pim.org/imag/commit/?id=f3af9e0ac41c3d0eb3820a04f20630af79160804
http://git.imag-pim.org/imag/commit/?id=ef07c2cba946d930e72bd5576b738987e09c2593
http://git.imag-pim.org/imag/commit/?id=a0f581b3426eacf492aa2c9dc914abf78f9fd701
http://git.imag-pim.org/imag/commit/?id=84bcdc68b75188b818a6d384e02818ee2324cfba
http://git.imag-pim.org/imag/commit/?id=85cb954b9fe907e9efc6d87744b0262f6f1960fc
http://git.imag-pim.org/imag/commit/?id=c4bd98a48fe56625179ce2ecfad403164f0a32b8
http://git.imag-pim.org/imag/commit/?id=3a0166ba7c301b92cc0ccdbec137a42345963dd9
http://git.imag-pim.org/imag/commit/?id=5d4ef8ed7f243c73b514378fa9693e92295065cd
http://git.imag-pim.org/imag/commit/?id=e615ec040f57b9b4b20f58d623fe32b0e6588257
http://git.imag-pim.org/imag/commit/?id=63faf06bc2774ac309c3783a8eefb286de30e570
http://git.imag-pim.org/imag/commit/?id=6f6368ed2f120fafce94ec07e3abd5061242eb64

imag User Documentation CONTENTS

9396acc matthiasbeyer/superceed-898

6fa281a matthiasbeyer /redo-ruby-build-setup

5b93£38 matthiasbeyer /libimagstore /storeid-exists-interface-result
03f17b8 matthiasbeyer/libimagentrylink /annotations

25a3518 matthiasbeyer/libimagentrylink /fix-exists

7e3c946 matthiasbeyer/libimagutil /fix

8eaecadb matthiasbeyer /fix-build-quick

241975 matthiasbeyer/libimagentryedit /remove-unused-imports
c74c26¢ matthiasbeyer /fix-readme-links

878162f matthiasbeyer/libimagstore /store-id-tests

1dab6¢6/ matthiasbeyer /prepare-0.3.0

4257ecl matthiasbeyer/update-toml

ab857fa matthiasbeyer/libimagstore/configuration-tests
4bal1943 matthiasbeyer/add-dep-ismatch

5ba2568 asuivelentine/master

dd24ce8 matthiasbeyer/revert-854

bb9ff5b matthiasbeyer/remove-hooks

08{43c8 matthiasbeyer /update-toml-query

16al2af matthiasbeyer/libimagentrydate/init

1b15d45 matthiasbeyer/libimagentrydate/fix-header-location
4{ff92e matthiasbeyer /libimagmail /use-email-crate

ef82b2a matthiasbeyer /add-missing-license-header

15b77ac matthiasbeyer/libimagentrytag/clap-validators
a9d2d7c¢ matthiasbeyer /libimagstore /fs-memory-backend-as-dependency-injection
c4d4fe9 matthiasbeyer /libimagstore /remove-todo-comment
71e3d3d matthiasbeyer/libimagentrytag/validator-helper-enhancement
bc95¢H6 matthiasbeyer/libimagstore/fs-abstraction-pub
487550 matthiasbeyer/libimagstore /storeid-local-part-altering
cd99873 matthiasbeyer/libimagstore/io-backend

e75c37f matthiasbeyer/libimagstore/io-backend-knows-format
d33b435 matthiasbeyer/libimagstore/all-entries

f8ed679 matthiasbeyer/libimagstore/backend-replacement
2c¢97d6f matthiasbeyer/libimagstore/embellishments

17bab5b matthiasbeyer /libimagstore/fixes

2b77064 matthiasbeyer/libimagrt/fixes

c9d03fc/ matthiasbeyer /update-travis

22a4dc0 matthiasbeyer/libimagrt/cleanup

b47972b matthiasbeyer /imag-store-dump

1b88c22/ matthiasbeyer /libimagentrycategory /init

7deab3c matthiasbeyer/libimagannotation/add-doc

c71b707 matthiasbeyer/libimagannotation/add-is_annotation
b3e7f09 matthiasbeyer/libimagtimetrack

c75cted matthiasbeyer/imag-link /fix-panic

e80608c matthiasbeyer/libimagstore/fix-file-length-setting
b4d0398 matthiasbeyer /imag-link /export-consistency-check

0.8.0

May 2018

http://git.imag-pim.org/imag/commit/?id=9396accc28a63d280b61e2206320a6b1afeafdc3
http://git.imag-pim.org/imag/commit/?id=6fa281a1a4e0c99b4bcb5a95f016018ef7453cd3
http://git.imag-pim.org/imag/commit/?id=5b93f3848cb60ae76a450f79b6f3bd984847db0e
http://git.imag-pim.org/imag/commit/?id=03f17b8a1c71efc385b645c0db74a5e2f6b9dfd9
http://git.imag-pim.org/imag/commit/?id=25a35183dd29051a159475f4a18d10de5051387c
http://git.imag-pim.org/imag/commit/?id=7e3c9467e7b95324f1bc34dc05fb8b33e2a26e90
http://git.imag-pim.org/imag/commit/?id=8eaead5f52894fb5c46fe9e5fbefbbf1d80fd6de
http://git.imag-pim.org/imag/commit/?id=241f9752534c2518b160141509914ed7bb1d364e
http://git.imag-pim.org/imag/commit/?id=c74c26ccd143d905c94ecf84ac423293b7170623
http://git.imag-pim.org/imag/commit/?id=878162f263b8d90dccbea8b1b82e96e005e04860
http://git.imag-pim.org/imag/commit/?id=1da56c6d9df689150c94631bbb5147c36070b75c
http://git.imag-pim.org/imag/commit/?id=4257ec10268fef06d5888c48f9fc8f9e6f35c5ba
http://git.imag-pim.org/imag/commit/?id=a5857fa64c949c9f2c9dea3036d870bd592272cc
http://git.imag-pim.org/imag/commit/?id=4ba19430b754d47fc673164f7db7c1e4e619eb31
http://git.imag-pim.org/imag/commit/?id=5ba2568415615b7fcf3f2dce939ee2695bf498ff
http://git.imag-pim.org/imag/commit/?id=dd24ce810a80222a625b5f24e6e2b7cb132a91c1
http://git.imag-pim.org/imag/commit/?id=bb9ff5bfd824bd1c09f98fc9f77348965f7f1573
http://git.imag-pim.org/imag/commit/?id=08f43c88111f90e5e2ac4980c572835d4a32fa8c
http://git.imag-pim.org/imag/commit/?id=16a12af873bdeae7eb2da94def40086fb239b1da
http://git.imag-pim.org/imag/commit/?id=1b15d45e7cf0e63e8370fbf779b12a9fce27412d
http://git.imag-pim.org/imag/commit/?id=4fff92e7c02888567eae3aa34a63c19e9611daf9
http://git.imag-pim.org/imag/commit/?id=ef82b2ab415c7264109cf21d5c60f2a85340d627
http://git.imag-pim.org/imag/commit/?id=15b77ac2c140dc14f6670a05e2b0f324165c8b2f
http://git.imag-pim.org/imag/commit/?id=a9d2d7c3545ab424cf1c6d2ebeea827616a924fe
http://git.imag-pim.org/imag/commit/?id=c4d4fe938937a2cb27d404fb1d026f234c50b9ac
http://git.imag-pim.org/imag/commit/?id=71e3d3d2d11219fdd1810c211708d8a321d45fa3
http://git.imag-pim.org/imag/commit/?id=bc95c5615d8bac61757dabdc1e6148af626502ff
http://git.imag-pim.org/imag/commit/?id=f487550f8174e4ad8ee69361b01b19acedf69cba
http://git.imag-pim.org/imag/commit/?id=cd99873f1700bbd6eb53f5d63ddea874750afb67
http://git.imag-pim.org/imag/commit/?id=e75c37fbb2eaad7018c1ad18c227e82e67ec9629
http://git.imag-pim.org/imag/commit/?id=d33b4350313364bab82c7e509bb9d6da219f5bb0
http://git.imag-pim.org/imag/commit/?id=f8ed6794c2fc54ab4b61065835416a32eef74557
http://git.imag-pim.org/imag/commit/?id=2c97d6f1946d0f05bb95ca8d2ed09d093c4e6e92
http://git.imag-pim.org/imag/commit/?id=17bab5b0b972fd9ea3198157f18e45d160679064
http://git.imag-pim.org/imag/commit/?id=2b7706424a225e89e79b172ae07a6b12ee2ba74a
http://git.imag-pim.org/imag/commit/?id=c9d03fc3c2eed003efac9cc1d805a51be69b7cb9
http://git.imag-pim.org/imag/commit/?id=22a4dc09293c21d34317e3b3f6b6c3a366ce1923
http://git.imag-pim.org/imag/commit/?id=b47972beddc66c07d1b0bfdfb3947f5392e917cb
http://git.imag-pim.org/imag/commit/?id=1b88c22decf168e2e02961c85cf5190ed44b6dc5
http://git.imag-pim.org/imag/commit/?id=7dea53c6c00ad615ffcfb372859fcd61d08c4a21
http://git.imag-pim.org/imag/commit/?id=c71b70702c30f587272fc2dbb20344bbcdeac872
http://git.imag-pim.org/imag/commit/?id=b3e7f095ce2b91255dd641e68009afba7582db53
http://git.imag-pim.org/imag/commit/?id=c75cfe4b608068fd65b4a2fa273a7b06f7ed51b6
http://git.imag-pim.org/imag/commit/?id=e80608c6097cac5a44d16a0d28ae7c1279c8a6a5
http://git.imag-pim.org/imag/commit/?id=b4d039833305565b9182d9d6ff4e162287a21fbf

imag User Documentation CONTENTS

f041fb3| matthiasbeyer /fix-dep-rustc-version

297eebl| matthiasbeyer /remove-nix-deps

bee4e06 irobert91 /imag-link /rewrite-tests

afchbd1f matthiasbeyer/update-toml-query

58047d3 matthiasbeyer/libimagtimetrack-to-libimagentrytimetrack
3c07f47 matthiasbeyer /libimagtimetrack /more-features
3767d8d matthiasbeyer/update-chrono

c9360a4 matthiasbeyer /imag-link /test-utils-to-libimagutil
e4f8d4e matthiasbeyer /imag-tag/tests

fchbbe3 matthiasbeyer /libimagstore /glob-iterator-fix
eclcle8 matthiasbeyer/bin-refactor

4b07¢21 matthiasbeyer/todo

057d919 matthiasbeyer /imag-timetrack

0f436d5 matthiasbeyer/doc-overhaul

al1289cc/ matthiasbeyer/update-readme

e Stats:

127 merged branches
8 contributors

9.12 0.2.0

e Complete rewrite of 0.1.0 with new architecture and “modules” instead of monolithic

approach. Can be considered first version.

9.13 0.1.0

e Initial version, nothing special.

0.8.0

May 2018

http://git.imag-pim.org/imag/commit/?id=f041fb3b1836ca7cd34c45b62c1abe2a69e53c5e
http://git.imag-pim.org/imag/commit/?id=297eeb1bd24a79ff29c55d5a591db05577b08cfd
http://git.imag-pim.org/imag/commit/?id=bee4e0642689deb563dd92d02e2b211647db6a6d
http://git.imag-pim.org/imag/commit/?id=afc5d1f929a49c72e76dd0140570e21a982817a6
http://git.imag-pim.org/imag/commit/?id=58047d319a0aaa82fd9da7c4cc4857ca65ef53f6
http://git.imag-pim.org/imag/commit/?id=3c07f47c4ae6c9a74958200b018646233fce23fe
http://git.imag-pim.org/imag/commit/?id=3767d8d38f81b2ec0382a3576811820179e3d249
http://git.imag-pim.org/imag/commit/?id=c9360a460abe0faf013d0101659bc594c5d0306c
http://git.imag-pim.org/imag/commit/?id=e4f8d4ec08cd506de10a5c01d6749bb9a993c603
http://git.imag-pim.org/imag/commit/?id=fc5bbc3b9df91f4dd93bfa11ec0b71dddd593d2d
http://git.imag-pim.org/imag/commit/?id=ec1c1e8e3d40ec8c95947bdf66c448fbad5e6a40
http://git.imag-pim.org/imag/commit/?id=4b07c21c34c047a7be2ae5041397842c811d80b3
http://git.imag-pim.org/imag/commit/?id=057d9192398e19f03297c094d9fbaf8932cadfa0
http://git.imag-pim.org/imag/commit/?id=0f436d5b88f2794159c6837cc914bd5fa8bcce55
http://git.imag-pim.org/imag/commit/?id=a1289cc559d783f273d39316eb37c0c3b9ce5f7d

	Introduction
	The Problem
	The Approach
	Implementation
	Alternative Projects

	Architecture of the imag code
	Crate types
	Architecture of an imag module
	Types

	The Store
	File Format
	Header Format
	Content Format
	Example

	File organization
	Backends
	Problem
	Implementation

	Conventions, best practices
	Versioning
	Store and Entry functionality
	Libraries
	Library naming
	Library scope
	Library error types/kinds
	Libraries with commandline frontends
	Library testing

	Commandline tools

	Writing an imag module
	Data layout
	libimagnumberstorage
	Setup
	Dependencies to other libraries
	Interface

	Modules
	Bookmarks
	Category
	Diary
	Edit
	Init
	Link
	Internal linking
	External linking

	Log
	Usage

	Mails
	CLI

	Notes
	Reference
	Store
	Tagging
	Timetrack
	Todo
	View
	Wiki

	Libraries
	libimagbookmark
	libimagcontacts
	libimagdiary
	Future plans

	libimagentryannotation
	Library functionality

	libimagentrycategory
	libimagentrydatetime
	libimagentryedit
	libimagentryfilter
	libimagentrylink
	libimagentrymarkdown
	libimagentryref
	Usage
	Limits
	Usecase
	Long-term TODO

	libimagentrytag
	libimagentryutil
	libimagentryview
	libimagerror
	libimaghabit
	libimaginteraction
	libimaglog
	libimagmails
	libimagnotes
	libimagrt
	Long-term TODO

	libimagstore
	Long-term TODO

	libimagtimetrack
	Store format
	Library functionality

	libimagtodo
	libimagutil
	libimagwiki
	Layout
	Autolinking

	Contributing to imag
	Without Github
	Finding an issue
	Prerequisites
	Commit guidelines
	Feature branches
	Code of Conduct
	Developer Certificate of Origin

	Changelog
	0.8.0
	0.7.1
	0.7.0
	0.6.4
	0.6.3
	0.6.2
	0.6.1
	0.6.0
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

